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We examine the dimension of the invariant measure for some singular circle 
homeomorphisms for a variety of rotation numbers, through both the thermo- 
dynamic formalism and numerical computation. The maps we consider include 
those induced by the action of the standard map on an invariant curve at 
the critical parameter value beyond which the curve is destroyed. Our results 
indicate that the dimension is universal for a given type of singularity and rota- 
tion number, and that among aU rotation numbers, the golden mean produces 
the largest dimension. 
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measure; circle homeomorphism; rotation number: twist map; critical curve; 
renormalization. 

1. INTRODUCTION 

In the last decade there has been much interest in the study of transitions 
to chaos and the onset of stochasticity in dynamical systems. It has been 
discovered that fractal structures often appear on the border between 
regular and chaotic dynamical behavior. In the best-known examples the 
fractal objects exhibit robust scaling properties and renormalization ideas 
can be naturally applied. This was first understood by Feigenbaum for the 
period-doubling route to chaos--a cascade of period-doubling bifurcations 
accumulating to a critical parameter corresponding to a Cantor set attrac- 
tor with ufliversal scaling properties/7"81 Renormalization ideas also have 
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been used to study the transition to chaos in two different situations which 
we examine in this paper. One comes from the disappearance of 
quasiperiodic motions in the case of critical circle mapsJ 9"'-31 The other is 
connected with the destruction of invariant tori for two-degree-of-freedom 
Hamiltonian systemsJ ~~ This case can be reduced, by considering a 
Poincar~ return map, to studying the destruction of invariant curves for 
area-preserving maps of the cylinder. In this paper we will study the fractal 
properties of the dynamics in both situations. 

Consider first the case of critical circle maps. A familiar example is the 
two-parameter  family of maps 

k 
x ~ gk , . , (x )  = x + co - ~ sin 2nx(mod 1 ), k>~0 

For 0 ~< k < 1 this is a family of diffeomorphisms of the cricle. When k = 1 
the maps are still homeomorphisms,  but there is a cubic inflection point at 
x = 0, and hence the inverse of the map is not differentiable. For  k > 1 the 
maps are no longer invertible. 

For a circle homeomorphism g we can define the "rotation number" 
of g to be, roughly speaking, the average amount  x is rotated around the 
circle per iterate of the map. More precisely, the rotation number  p 
associated with g is defined by "lifting" g to a map from the real line to 
itself which, when taken modulo one, gives the action o f g  on the circle. On 
the real line g is a strictly increasing function which satisfies g ( x  + 1 ) =  
g ( x )  + 1. Let g" denote the nth iterate o f  g, and let 

IZ/ ~ 

lira g ~ ~ P 

The limit is independent of the initial point x. (Strictly speaking, the lift of 
g to the real line is only determined up to an additive integer, so the same 
is true for p; we use the convention that 0 ~< p < 1.) 

If the rotation number p of a circle homeomorphism g is rational, 
say p =p /q ,  then all trajectories converge to some periodic orbit which 
makes p rotations every q iterates. Irrational values of p correspond to 
quasiperiodic motion and the dynamics is topologically conjugate to a rigid 
rotation by the angle p. It is found that for a fixed value k ~ [0, 1 ], there 
exists an interval of values of the parameter  o~ for which gk.o, has a given 
rational rotation number, and a unique value of co, say o-~k(p), corre- 
sponding to each irrational rotation number  p. For  k < 1 it follows from 
the theorem of Herman ~4~ that that the Cantor  set of co with irrational 
rotation numbers has positive Lebesgue measure, while it has been shown 
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by Swi~tek ~27~ that this set has Lebesgue measure measure zero for k = 1. 
Moreover, it was shown for k = 1 that the Hausdorff  dimension of this set 
is less than 1. ~8 ' '~  For  k > 1 the map gk,,o is no longer a homeomorphism 
and different trajectories of the map may have different rotation numbers; 
the dynamics thus becomes more complicated. 

In addition to the fractal structure of parameter  space in this example, 
we find that the orbit structure in phase space becomes fractal when k = 1. 
One of the main purposes of our numerical study is to show that for 
irrational rotation numbers, every trajectory, though dense in the circle, is 
concentrated on a fractal set in the following sense. It is well known that 
circle homeomorphisms are uniquely ergodic, that is, there exists a unique 
invariant probability measure It so that every trajectory is asymptotically 
distributed according to IL. The invariant measure ll is absolutely 
continuous with respect to Lebesgue measure for 0 ~ < k <  1 and for 
Diophantine rotation numbers p, that is, numbers p such that for every 

> 0 there exists a C > 0 such that for all integers p and q > 0, 

p C 
P - > q_, +-----7 

The set of Diophantine numbers has full Lebesgue measure. However, 
when k = 1, for all irrational rotations numbers the invariant measure It is 
singular with respect to Lebesgue measure, and furthermore has Hausdorff  
dimension (described below) less than l J  18"j2"26~ 

For  k = 1 and various irrational rotation numbers, we study the fractal 
dimension of ll, which can be defined in several ways (see, for instance, 
ref. 6). One definition is based on the Hausdorff  dimension for sets. We say 
that the Hausdorff  dimension of a probability measure/J  is 

d~l(lt) = inf dn(S) 
{ S ~  T : . u I S ) =  I } 

what dH(S) denotes the Hausdorff  dimension of the set S. Thus if 
dn(It) < 1, then we can say that trajectories asymptotically spend "almost 
all" of their time on a set of Hausdorff  dimension less than one. Another 
notion of dimension for measures is the "information dimension," which we 
recall in Sect, ion 2. These dimensions are generally expected to coincide for 
the natural invariant measures of dynamical systemsJ 6"29~ Other fractal 
properties of the invariant measure are captured in a graph of an '~f(~) 
curve"; see ref. 13 for an example involving the map gt.,,, for a particular 
rotation number. 

By the principles of renormalization we expect that the dimension of 
the invariant measure should depend only on the rotation number  and the 
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nature of the singularity which makes the map critical, but not on the 
particular family of maps. The family gk, o, illustrates the case of a cubic 
singularity. We will consider also the case of a "break singularity," that is, 
a discontinuity of the derivative, as exemplified by the family of maps 

x 

xw-~h,. ,o(X)-c +(1 _c ) x+C O(mod  1), c > 0  

The first derivative of this homeomorphism has a jump discontinuity ar 
x = 0, and the ratio of the left-hand derivative to right-hand derivative is c 2. 
This ratio characterizes the break singularity in the same sense as the order 
of the inflection point characterized the singularity in the previous example. 
For  all c #  1 the set of co which have irrational rotation numbers has 
Lebesgue measure zero. 12~ It can be shown also that the invariant 
measures are singular for every irrational rotation number. 

Again an important question is how the dimension of the invariant 
measure depends on the rotation number and the value of c. As above, 
renormalization group ideology suggests that the dimensions we calculate 
are universal, in the sense that every homeomorphism with the same rota- 
tion number and same type of break singularity should have an invariant 
measure of the same dimension, t~9) 

Condisder next the case of area-preserving diffeomorphisms of the 
cylinder which are orientation-preserving and have zero Calabi invariant 
(the last condition means that there is no aggregate drift along the axial 
direction of the cylinder). These include maps of the form 

x~---, x + y - k f ( x )  (mod 1) 

y ~  y- lc f (x )  

where f ( x )  is an analytic, periodic function with period 1 and 
J~.f(x) d x = 0 .  When f (x )=(1/27r)s in  2rex, this map is the well-known 
"standard map"; see, for example, ref. 24. For k = 0 ,  the phase space 
decomposes into invariant circles y = p  with every possible rotation 
number p. For positive k, the map induces a homeomorphism on every 
invariant curve surrounding the circle, and thus every invariant curve has 
a rotation number associated with it. For  a given irrational rotation 
number p which is typical (to be precise, Diophantine), KAM theory 
guarantees that for small k there is an invariant curve with rotation 
number p, and this curve is analytic. As k increases, the curve with rotation 
number p is eventually destroyed and does not exist for k greater than 
some critical parameter value kp. 
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Though the critical invariant curve is not a fractal, the dynamics on 
the invariant curve is concentrated on a fractal set in the same sense as 
above. The map restricted to the curve is a homeomorphisms and thus 
induces a unique invariant probabili ty measure It supported on the curve. 
It is expected tha t /x  is fractal for critical invariant curves; see ref. 22 for 
graphs of f ( ~ )  curves for p for a few rotation numbers. The dimension of 
it is nonetheless difficult to distinguish from 1; in this paper  we give strong 
numerical evidence that the dimension is in fact strictly less than 1 for a 
wide variety of rotation numbers. 

Critical invariant curves, in contrast with KAM curves, are not 
analytic. They are known to be at least Lipschitz,14" 15) but not C -~ +" for any 
e > 0. ~7~ Our  numerical results for the dimension of the invariant measure 
indicate that the smoothness can be less than C 2, since for C-" diffeo- 
morphisms and the rotation numbers we study, the invariant measure is 
absolutely continuous. ~6~ Indeed, in the case when the rotation number  is 
the golden mean, the maximum smoothness of the critical curve has been 
shown to be C ~ +~', where y < 1.125j 

Our  numerical results are based on both a direct approximation of the 
invariant measure and its information dimension, and a computat ion of 
the Hausdorff  dimension of the measure based on the thermodynamic 
formalism. The thermodynamic formalism has been used widely in the con- 
text of renormalization starting with ref. 28; see also refs. 2, 5, and 1. 

In Section 2 we describe in more detail both approaches, and in 
Section 3 we present our numerical results for a variety of rotation numbers. 
Some concluding remarks are given in Section 4. 

2. M E T H O D S  

Let f be a homeomorphism on the circle and let S be the circle. All 
of our computat ions are based on forming partitions of S using the points 
of a trajectory Xo, Xl, x2,..., XN_~ o f f  The numbers N of intervals in the 
partitions we study are based on the continued-fraction expansion of the 
rotation number  p of f This expansion is described in the following 
paragraph. 

We write p = [a~, a2, a3,...], where a~, a_, .... are positive integers and 

1 
P =  1 

a~-[- 
1 

a 2 + - -  
a 3 +  - - .  

The numbers a , ,  a 2 .... which make up the continued fraction for p can be 
generated recursively by letting to = p ,  and for n >i 1 letting (a,,, t,,) be the 

822/85/1-2-18 
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integral and fractional parts of 1 / t , , _  i. (If p is rational, this procedure even- 
tually terminates when t,, = 0 for some n, but if p is irrational, an infinite 
sequence of a ,  will be generated.) We define p ,  and q,, to be the numerator 
and denominator of the rational approximation to p given by truncating 
the continued fraction at a,,, that is, 

p .  1 
4 

q,, 1 
aa-k- 

1 
a 2 +  . . .  + - -  

a n 

(Recursively, p,, = a,, p ,  _ ~ + p,, _ 2 and q,, = a,,q, ,  _ ~ + q,, _ 2 for 17 >i 2 with 
p0= 0 ,  q o = l ,  p ~ = l ,  q = = a ~ . )  The ratio p , , /q , ,  is called the nth 
"convergent" of p. 

For  ii >/1 we consider the partition .~,, generated by the trajectory 
Xo,  x~ ..... x q , + q , , _ , _ l .  Through these first q, + q ,_  ~ iterates, the closest 
points of the trajectory to xo wll be x,~,_~ on one side and Xq,, on the other 
side. Thus the intervals of .~,, can be thought of as the first q,, iterates of the 
interval /,,_1 bounded by Xo and x q ,_ ,  and the first q,,_ t iterates of the 
interval/ , ,  bounded by xo a n d  Xq,,. (24) 

We study mainly those rotation numbers with eventually periodic con- 
tinued fractions. The reason for this is twofold. First, our dimension com- 
putations are of course based on a finite level of precision, and typically we 
can only study the partitions N, for relatively small n. Thus in order for our 
estimates to be reliable, it is important for the initial terms in the con- 
tinued-fraction expansion p = [a~, a_,,...] to be characteristic of the entire 
expansion. Furthermore, if the continued fraction (eventually) has period j, 
the partitions N, and N,+j will be structurally similar, making comparisons 
between the two especially robust. The second reason for studying periodic 
continued fractions is that those are the rotation numbers whose invariant 
curves are most readily observable for planar maps like the standard map. 

2.1. Information Dimension 

Given a partition of the circle S into intervals {J.,}, form the quotient 

Z , , , l ~ ( J , , )  log/~(J,,,) 

Y~,, , l t (J, , , )  log IJ,,,I 

where ]Jml denotes the length of the interval J,, and It is the natural 
invariant measure associated with the map f As the size of the intervals in 
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the partition approaches zero, this ratio generally approaches a limit which 
we call the information dimension ~31 of/ t ,  denoted dt(/t). 

For  the partitions N, described above, the measure/.t of each interval 
is known exactly. Because f is conjugate to a rigid rotation by p and the 
invariant measure for the latter map is just Lebesgue measure, the measure 
of the interval between Xo and xq,, is ]pq,,-p,,]. Thus we can estimate the 
information dimension of the critical invariant curve with rotation number 
p by estimating the parameter value which gives rise to this curve, com- 
puting a trajectory of length q,, + q,,_ ~, and measuring the lengths of the 
intervals that make up the partition ~,. For the circle maps the calcula- 
tions are similar, except that we need not search for the critical parameter 
value. 

2.2. The T h e r m o d y n a m i c  F o r m a l i s m  

Now we construct the symbolic representation for the system of parti- 
tions ~,,. Namely, we label each interval of the partition ~, with a word 
(a~, a2 .... a,,) of  length n in some finite alphabet. Each ai takes values in a 
finite alphabet depending on i: ai = 0, 1, 2 ..... a~ and P. Here a~ is an integer 
entry in continued-fraction expansion for p and P is a special letter whose 
meaning will be explained shortly. The basic property one needs for correct 
symbolic representation is the following: if A(n + 1 ) is an interval which is 
an element of the partition ~,+ ~ and A(n) is an element of ~, containing 
3(17 + 1), then the first 11 letters of the word for A(n + 1) coincide with the 
word for z1(n). We just add one more letter depending on the position of 
A(n + 1) inside A(n). We add the special letter P if A(n + I) coincides with 
A(n), and add letters 0, 1 ..... a,, if A(n) is partitioned into (a,, + 1 )  parts. It 
can be seen that there are only these two possibilities. The intervals which 
are generated by (Xo, xq,_t) are those which are partitioned when we pass 
from .~, to :~,+ i, and we add letter 0 to the subinterval closest to the point 
Xo, letter 1 to the next subinterval, and so on. We do the same for the 
images of (x 0, X,h,_~): for (x;, x~+q,_,) we add letter 0 to the subinterval 
closest to x~, letter 1 to the next one, and so on. This procedure defines the 
symbolic representation inductively. The letter P (for "preserve") plays a 
special role. It can be seen that we always have P after 0, and always have 
0 before P. One could avoid this letter, but then the words corresponding 
to different intervals of partition ~, would have different length. 

The system of partitions ~,,  n >~ 1, and our system of labeling generate 
the symbolic representation. Namely, there is a correspondence between 
the points of the circle and the infinite sequences of symbols 
( ~ ,  cr 2 ..... ~ ...... ). In ergodic theory such sequences are called subshifts of 
finite type. This correspondence is one-to-one except for the countable set 
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of endpoints of the partitions ~,,  n>/1. Every measure on the circle 
generates a corresponding measure on the infinite words (17], a2 ..... a ...... ). 
Denote by P r  the measure generated by Lebesgue measure. The ther- 
modynamic formalism deals with this measure, or random process, Pr. 

From the point of view of statistical mechanics Pr  is a one-dimensional 
lattice system, and at is a spin variable sitting on a lattice point i and 
taking values P, 0, 1, 2 ..... Denote the conditional probability of a spin a,, 
under the condition of fixed a,,_ 1, a,,_2 ..... al by 

Iz1(17, ..... G , , -~ ) I  
Pr(17,, l a , , - i  ..... a l ) -  

IL l (a~ ..... a, , ) l  

where 3(171 .... 17,) and z1(17! ..... 17,-1) are corresponding intervals of parti- 
tions ~, and ~ ,_  i, respectively, zl(17~ ..... 17,,) c zI(17~ ..... 17,-1). Write 

Un(17(1) ~ 17n, 0.(2) ~___ 17n-  1 ,-"~ 0"111) ~ 171 ) 

- log Pr(17, I a,,_ l ..... 171) 

We shall call U,, the potential at point n. It has the meaning of the 
energy of interaction of the spin 17, with all the spins (17,_ 1,.,  171). Note 
that the order of variables in U,, is inverted. The potentials U,, have the 
following key property: they depend mostly on the first variables 17~1), 17c2~ .... 
and depend exponentially on the last variables 17~"1, 17~"-~) ..... This fact is 
based on numerical evidence in the case of critical invariant curves and can 
be rigorously proved for critical circle maps ~ls~ and for circle maps with a 
break singularity/2~ This is the crucial property for the thermodynamic 
approach. More precisely, it means the following. Suppose we have two 
sequences (&~,..., 17t")) and (•(I) , . . . ,  e(n}) ,  and a I~ =el]l,..., 17tkl=etk). Then 

IU,(17111 ..... 17o.)__ U, , ( e~ ' ,  .. . . .  el,,,)l < C.lk 

where 2 < 1 does not depend on n. This means that the system of statistical 
mechanics corresponding to U,, is nice: there are no phase transitions, corre- 
lations decay exponentially, and the process P r  is "almost" Markovian. 
Since 

[A(G1 ..... 17.)1 = exp{ U,,(a ....... o"1) -~- U n - 1 ( 1 7 n - - l " '  171) 

+ ' "  + U2(172,171) + U,(17,)} 

the partition function 

z , , G )  = 5-'. IA(c , ,  ..... ~,,)1 p 
( 0 "  I , . . . ,  cr n ) 
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coincides up to a bounded constant factor with the partition function for 
our system of statistical mechanics. 

Denote by Pa(f l )  the Gibbs measure on the space of sequences 
{(a~,a2,...)} corresponding to the potentials U,, and the "inverse tem- 
perature" ft. Notice that fl = 0, I correspond to the invariant measure ll on 
the circle and Lebesgue measure, respectively. In other words, PG(O) is 
equal to the measure generated by ll and P a ( I )  coincided with Pr. All 
information about  dimension can be extracted from the free energy f,,(fl) = 
(1/17) log Z,,(fl). The Hausdorff  dimension of the measure p is given by 

f,,(O) 
dim~(/t) = lim 

. . . . .  . f ' , ( 0 )  

The reason for this formula is as follows. It is not hard to show that the 
above limit is equal to the information dimension defined previously, and 
the applicability of the thermodynamic formalism guarantees that both 
dimensions are the same. (~-9) 

It is generally believed that in the case of rotation numbers with 
periodic continued-fraction expansions, the potentials U,, tend to a limit 
when n --+ oo, and this limit is just s different limiting potentials, where s is 
a period of the continued-fraction expansion. This means that there are s 
functions Uo ..... U,._ ~ (all depend on infinite sequences) such that 

U,,.,.((7 I~) ..... (7 '"))- - '  U o ,  17--, oo 

U, , . ,+l (a  el) ..... (7("s+l) ) - - )  U I, n - - , ~  

U,,.,. +. , ._ i((711) . . . . .  ( 7 ( ' '  + 1 " -  ' ))) - +  U . , . _ , ,  , - - , ~  

Thus the limiting system of statistical mechanics has periodic potential 
(U 0, U, ..... U,_I) .  The next step is to form the transfer-matrix operator  
2 ' ( f l )=~. , ._)( f l )  . . . . .  L~al(fl).L/'o(fl), where the L4i(fl) are transfer-matrix 
operators corresponding to potentials Ui, 0 ~< i ~< s -  I: 

( ~i( f l )  f)((711), (712) ..... (7(,,),...) 

= ~ e u,,...,')..,-') ...... ,,,))f((7,(71,),(712) ..... (7,,,) ...) 
a = P ,  0 ,  I,...,ai 

Denote by 2(fl) the largest eigenvalue of the linear operator  5e(fi). Then 
the partition function Z,,(fl) behaves like (2(fl)) ''Is. It follows that the free 
energy 

f,,(fl) _ log Z,( f l )  ~ log ).(fi) as n ---) oc 
II S 
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In real calculations one should use an approximation of the infinite- 
dimensional operator ~ ( f l )  with finite matrices. This means that we 
approximate the potentials Uo, U1 ..... U,._ 1 by potentials depending on the 
first k symbols only and restrict the action of ~.(fl), i =  0 ..... s -  1, to the 
subspaces of functions depending on k -  1 symbols. This approximation is 
exact in the limit k ~ co. Let us consider in more detail the approximation 
scheme in the simplest case of "golden mean" p = ( v / 5  - 1)/2. In this 
case there is only one limiting potential, which we shall denote by 
U(cr ~'~ ..... cr"l,...). 

Fix some k and consider intervals of the partition ~,  inside the inter- 
vals (Xq,,_k_ ,, Xo), (Xo, Xq,,_ k ). For k = 2 we have the following picture: 

-41(n) A2(n) -43 n -44(n) -45(n) 

I I I I I I 
Xqn  - 3 Xqn  + qn -- 3 A'qn -- I XO A'qn "Vqn -- 2 

The symbolic coordinates of the intervals d~(n) ..... As(n)  are 

d d n ) = (  .... P, 1,0), d 2 ( n ) = (  .... P, 1, 1), A 3 ( n ) =  ( .... P , O , P )  

d 4 ( n ) = (  .... 0, P, 0), As (n )= (  .... 0, P, 1) 

For k = 2 we use an approximation of U,, by a function depending on two 
symbols: 

eU,,io.t ) ~l(n) e u,,(i, 1 ~ Z12(ll) 
= + y ,  - - -*  1 - ~ ,  

~J dn) + Adn) A2(n ) +/1_@7) 
17- -~  GO 

e U'(P'~ ---- A3(11) = 1 
,'13(11) 

eU,,~o,e ) z~ 4(1'/) eU, ll. m As(n)  
- -  ~ 0~,  = ~ 1 - -  0 r  

A4(n) + As(n) A4(n) + ~5(n) 
I 1 " " ) "  

Consider the restriction of the action of ~ ( f l )  to the subspace of functions 
depending on one symbol only. Then in the limit n ~ oo we obtain the 
following approximation for the transfer-matrix operator L,e(fl): 

(0 
~.q,(2)(fl)__ yls ( l _ ~ ) p  

\ o d  (1 - or 
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The first column (and row) corresponds to f (0 ) ,  the second to f (1 ) ,  the 
third to f(P). The values of ~ and y generally must be obtained from 
numerical data. For  the standard map in the critical case we find that 

~ 0.4996, y ~ 0.3543. Denote the largest eigenvalue of s by 2(fl). Then 
f , , (f l)- , log(2(fl)) ,  n ~  oo. One can check that 2 (0 )=  I/p, 2(1 )=  1. The 
Hausdorff dimension of the invariant measure p is then given by 

- log(2(0) )  log p 
d . ( ~ )  = 

log(2(fl))'la=0 p2'(O) 

Using the approximation of .LP(fl) by ~o-)(fl), it is easy to show that 

)j2v(O) = log(1 - y )  + (1 - p )  log a + p  log(y(1 - a ) )  
2 p +  1 

which leads to the following approximate dimension: 

d~)(p) _ (log p)(2p + 1 ) 
p log( 1 -- y) + p( 1 -- p) log ~ + p2 log(y( 1 -- ~)) 

For  the standard map we obtain 

d~(kt) ~ 0.9827 

The next approximation corresponds to k = 3  and the following 
picture: 

At(n) d2(n) A3(n) d4(n) d5(n) A6(n) d7in) ~Jg(n) 

I I I I I I I [ 
-X'qn _ 3 Xqn+qn_ 3 Xqn_ I .'r Xqn Xqn_ 2 Xqn+qn_ 2 Xqn--I+qn-4 Xqn-4 

Hence 

/ ] 1 0 l ) = (  .... 0, P ,  1,0), d z ( n ) = (  .... O ,P , I ,  1), As(n)=(  .... O,P,O,P) 

A4(n)=(  .... P,O,P,O), As(n)=(  .... P,O,P,I)  

& ( n ) = (  .... P , I , I , 0 ) ,  

Denote 

lim A,(n) 
. . . . .  /] l(n) +/]2(n) 

/]7(17) = (  .... P, 1, 1, 1), A8(n ) = (  .... P, 1,0, P) 

A4(n) A6(n) 
lim - ~, lim 

. . . .  / ] 4 ( n )  + As(n) . . . .  A6(n) + Av(n) 
= V  
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Then the matrix L~13)(fl) has the form 

l 
0 0 l 0 0 / 
v/j (l--v) p 0 0 0 

s 0 0 0 ~# ( l - ~ )  p 
0 0 l 0 0 
7 ~ (1--7) t~ 0 0 0 

Here the first column (and row) corresponds respectively to f(0,  1), 
f(1,  l), f(P, 0), f(O, P), and f ( l ,  P). Notice again that this system of 
approximations is exact in the limit k--* oe. 

Table I. Dimension of the Invariant Measure on the Critical Curve Computed 
for a Variety of Rotation Numbers 

Standard map Dimensions for circle maps 

Rotation Critical Break map Break map 
number  p parameter Dimension Sine map c = 2 c = 5 

[1, I, 1,...] 0.971635 0.9893 0.9216 0.9852 0.9236 
[2,2,2, . . . ]  0.957445 0.9872 0.9165 0.9840 0.9170 
[3, 3, 3,...] 0.890863 0.9823 0.9066 0.9814 0.9029 
[4, 4, 4,...] 0.804725 0.9750 0.8940 0.9776 0.8821 

[1, 2, 1, 2,...] 0.876067 0.9808 0.9134 0.9807 0.8912 
[2 ,1 ,2 ,1 , . . . ]  0.940283 0.9808 0.9134 0.9844 0.9278 
[1 ,3 ,1 ,3 , . . . ]  0.772375 0.9672 0.9012 0.9736 0.8482 
[3, 1, 3, 1,...] 0.845313 0.9672 0.9012 0.9817 0.9222 
[1, 4, 1,4,...] 0.684209 0.9530 0.8889 0.9647 0.8007 
[4, 1, 4, 1,...] 0.751106 0.9530 0.8889 0.9784 0.9147 
[2, 3, 2, 3,...] 0.920194 0.9821 0.9099 0.9806 0.8920 
[3, 2, 3, 2,...] 0.898046 0.9821 0.9099 0.9834 0.9204 
[2, 4, 2, 4,...] 0.873408 0.9732 0.9008 0.9753 0.8584 
[4, 2, 4, 2,...] 0.811209 0.9732 0.9008 0.9817 0.9183 
[3, 4, 3, 4,...] 0.867902 0.9772 0.8996 0.9776 0.8759 
[4, 3, 4, 3,...] 0.815964 0.9772 0.8996 0.9806 0.9051 

[1, 1, 2, 1, 1, 2,...] 0.957041 0.9869 0.9170 0.9841 0.9172 
[1, 1, 3, 1, 1, 3,...] 0.915727 0.9813 0.9082 0.9815 0.9030 
[1, 2, 2, 1, 2, 2,...] 0.906712 0.9859 0.9151 0.9836 0.9146 
[1,2,  3, 1, 2, 3,...] 0.887467 0.9814 0.9082 0.9815 0.9035 
[1, 3, 2, 1, 3, 2,...] 0.824204 0.9811 0.9084 0.9815 0.9035 
[1, 3, 3, 1, 3, 3,...] 0.815351 0.9777 0.9033 0.9800 0.8953 
[2, 2, 3, 2, 2, 3,...] 0.945871 0.9843 0.9118 0.9827 0.9098 
[2, 3, 3, 2, 3, 3,...] 0.919487 0.9827 0.9086 0.9819 0.9052 
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3. N U M E R I C A L  RESULTS 

Table I displays the results of the dimension calculations for various 
rotation numbers. All dimensions were computed initially using a direct 
approximation to the information dimension as described in Section 2.1 
and corroborated by computing the transfer-matrix operator as described 
in Section 2.2 for large n and k. We believe all numbers to be accurate to 
within 1 in the last decimal place shown. We computed dimensions for 
several other rotation numbers whose continued-fraction expansions are 
eventually periodic with the periodic part matching one of the above rota- 
tion numbers. In all cases, the computed dimension was identical to the 
dimension in Table I to the number of decimal places shown. We also 
repeated the computations for the standard and sine maps with sin 2nx 
replaced by �89 sin 2nx+ �88 sin 4nx and again the results matched those in 
Table I. 

Notice, though, that for the map with the break singularity, rotation 
numbers with period-2 expansions that eventually have the same periodic 
pattern but are "out of phase" yield different dimensions. The reason for 
this phenomenon is the asymmetry of the map at the singular point. For 
a few rotation numbers, we computed the dimension for the break map for 
several more values of the parameter c, including some very large ones. The 
results are shown in Table II. For the larger values of c, the parameter 
interval on which the rotation number is nonzero is very small, and thus 
the rotation number depends sensitively on the parameter in this interval. 
This results in a loss of precision in the data as c increases. 

Table II. Dimension of the Invariant Measure Computed for Various Values 
of the Parameter Characterizing a Break Singularity 

Dimens ions  for the break  m a p  

Pa rame te r  c p = [ 1, 1, 1,... ] p = [ 2, 2, 2,... ] p = [ 3, I, 3, 1 ,... ] 

I 1.0000 1.0000 1.0000 
2 0.9852 0.9840 0.9736 
3 0.9634 0.9603 0.9297 
5 0.9236 0.9170 0.8482 

10 0.8533 0.8409 0.720 
100 0.603 0.584 0.42 

1000 0.435 0.43 0.28 
10000 0.33 0.33 0.2 
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4. CONCLUSIONS 

An important observation we can make immediately is that in all 
cases, the golden mean gives the largest dimension among all rotation 
numbers. It has long been known numerically that for the standard map 
the golden-mean KAM curve is the most stable, in the sense that it is the 
last invariant curve to be destroyed as the parameter k is increased. Our 
results give support to this conjecture, and offer another sense in which the 
golden-mean critical curve is exceptional. Notice also that for the standard 
map smaller dimensions tend to correspond to smaller critical parameter 
values. However, a precise formulation of this relationship is difficult 
because the critical parameter depends on the entire continued-fraction 
expansion of the rotation number p, not just the eventual periodic part. 

Next, notice that generally speaking the dimension decays with the 
growth of the entries in the continued-fraction expansion of p, though one 
can find exceptions in Table I. In particular, periodic expansions whose 
entries are nearly equal often give larger dimensions than expansions with 
entries that are smaller but not as close to each other. For example, the 
rotation number [ 3, 4, 3, 4,...] gives a larger dimension than [ 1, 4, 1, 4,...] 
in all of the cases we studied, and larger even than [ 1, 3, 1, 3,...] in many 
of the cases. We further observe that the ordering of rotation numbers from 
highest to lowest dimension is similar for the different types of maps but 
not precisely the same. 

Finally, notice that the dimensions in Table I are close to one. We 
have two remarks concerning this. First, the dimensions decay with the 
growth of the strength of the singularity. For instance, we find both 
theoretically and numerically that the dimension tends to zero like a con- 
stant divided by log c as the parameter c for the break map tends to 
infinity, as shown in Table II. Second, the rotation numbers displayed in 
Table I are very special and are likely to give among the highest possible 
dimensions for each type of map. We do not anticipate, however, that the 
dimension approaches zero as one or more of the entries in a periodic con- 
tinued-fraction expansion approach infinity. 
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